

NORMANHURST BOYS HIGH SCHOOL

MATHEMATICS EXTENSION 1 YEAR 12 COURSE

Name:

Initial version by H. Lam, September 2019 with assistance from I. Ham. Last updated May 7, 2024 Various corrections by students & members of the Mathematics Department at Normanhurst Boys High School.

Acknowledgements Pictograms in this document are a derivative of the work originally by Freepik at http://www.flaticon.com, used under 😋 CC BY 2.0.

Parts of this handout are derived from Haese, Haese, and Humphries (2015),

MATH1131 Mathematics 1A and MATH1141 Higher Mathematics 1A Algebra Notes (2018), So and Wong (1987) and Pender, Sadler, Ward, Dorofaeff, and Shea (2019). Most GeoGebra applets listed here are courtesy of the NSW Department of Education's Mathematics Curriculum Support team/mEsh project's efforts.

Symbols used

A

k'n

Beware! Heed warning.

- Provided on NESA Reference Sheet
- Facts/formulae to memorise.
- (x_1) Mathematics Extension 1 content.
- Literacy: note new word/phrase.

Further reading/exercises to enrich your understanding and application of this topic.

Syllabus specified content

- Q Facts/formulae to understand, as opposed to blatant memorisation.
- \mathbb{N} the set of natural numbers
- \mathbb{Z} the set of integers
- ${\mathbb Q}$ the set of rational numbers
- \mathbb{R} the set of real numbers
- \forall for all

- For a thorough understanding of the topic, *every* question in this handout is to be completed!
- Additional questions from Haese Mathematics for Australia Specialist Mathematics 11 (Haese et al., 2015) CambridgeMATHS Year 12 Extension 1 (Pender et al., 2019) will be completed at the discretion of your teacher.

• Remember to copy the question into your exercise book!

ME12-2 applies concepts and techniques involving vectors

Syllabus outcomes addressed

and projectiles to solve problems

Syllabus subtopics

ME-V1 (1.1, 1.2) Introduction to Vectors (Introduction to vectors, Further operations with vectors)

Contents

1	Intr	oduction to Vectors													
	1.1	Definition													
	1.2	Representation													
		1.2.1 Geometric \ldots													
		1.2.2 Algebraic													
	1.3	Vector arithmetic													
		1.3.1 Addition													
		1.3.2 Subtraction/negative vectors													
		1.3.3 Magnitude and zero vector													
		1.3.4 Scalar multiplication													
	1.4	Vector equations													
2	Simple Vector Geometry														
_	2.1	Vector components													
		2.1.1 Unit vector													
		2.1.2 Cartesian basis vectors/components													
		2.1.2 Position vs displacement vectors													
	2.2	Vector arithmetic involving column vectors													
		2.2.1 Addition													
		2.2.2 Scalar multiplication													
		2.2.3 Magnitude													
		2.2.4 Direction 2 <													
3	Vec	tor Geometry with the Dot Product 2													
U	31	Definitions													
	3.2	Angle between two vectors													
	3.3	Other geometric proofs													
	3.4	Projection of a vector on to another vector 4													
	0.1	341 Derivation 4													
		3.4.2 Examples and proofs													
Δ	Pas	t examination questions													
11	A 1	2006 VCE Specialist Mathematics													
	11.1	$\Delta 11$ Paper 2 Section 1													
	ΔЭ	2008 VCE Specialist Mathematics													
	п. 4	$\Delta 21$ Paper 2 Section 1													
	Δγ	2000 VCF Specialist Mathematics													
	л.э	$\Delta 21$ Paper 2 Section 1													
		$\mathbf{A}_{0,1} = \mathbf{I}_{0,1} + \mathbf{A}_{0,1} + \mathbf{A}_{0,$													

A.4	2011 VCE Specialist Mathematics	51
	A.4.1 Paper 2 Section 1	51
A.5	2018 VCE Specialist Mathematics	51
	A.5.1 Paper 2 Section 1	51
A.6	2020 Ext 1 HSC	52
A.7	2020 Ext 2 HSC	53
A.8	2021 Ext 1 HSC	54
A.9	2022 Ext 1 HSC	54
A.10	0 2023 Ext 1 HSC	55
A.11	2024 NBHS Assessment Task 1	57
Referen	nces	63

Section 1

Introduction to Vectors

1.1 **Definition**

Definition 1

Quantities which only have

are known as *scalars*.

Example:

of an aeroplane.

Definition 2

Quantities which have both and are known as *vectors*.

Example: of an aeroplane.

Fill in the spaces

Other examples of vector forces:

•

5...

NTRODUCTION 7	ТÒ	V = CTORS -	REPRESENTATION
---------------	----	-------------	----------------

1.2 **Representation**

1.2.1 Geometric

6

Fill in the spaces

Vector quantities can be represented using a *directed line segment* or *arrow*.

- The ______ of the arrow represents the ______
- The shows its direction.

Definition 3

Two vectors are *equal* if they have the same

and

Corollary 1

The position of the starting point (tail) and ending point (arrowhead) does matter.

Example 1

Given \overrightarrow{PQ} as shown, draw two other vectors, $\underline{a} = \overrightarrow{AB}$ and $\underline{e} = \overrightarrow{EF}$ such that

$$\overrightarrow{PQ} = \overrightarrow{AB} = \overrightarrow{EF}$$

$$\overrightarrow{P}$$

$$\overrightarrow{P}$$

1.2.2 Algebraic

From Example 1, there are three ways of writing the vector drawn:

P <

- \overrightarrow{PQ} : the vector from the point P and at point Q.
- \vec{p} or p: NESA syllabus documentation, handwritten.

For vectors **p** and **q**, to perform $\mathbf{p} + \mathbf{q}$:

Vector arithmetic

Important note

Addition

Steps

Draw p.

Draw of q.

р

A Use a ruler!

1.3

1.3.1

1.

2.

3.

1.3.2Subtraction/negative vectors

1.3.3 Magnitude and zero vector

Definition 5

The *magnitude* of a vector $\underline{\mathbf{p}}$ is given by $|\underline{\mathbf{p}}|$.

Definition 6

The zero vector has magnitude zero, i.e. $\left| \mathbf{p} \right| = 0$. Direction is not

Usually written as 0 (handwritten: 0).

1.3.4 Scalar multiplication

Definition 7

If p is a vector, and $\lambda \in \mathbb{R}$,

- If $\lambda > 1$, then $\lambda \underline{p}$ extends the to $\lambda |\underline{p}|$.
 - (..... the vector \underline{p} by a factor of λ).
- If $0 < \lambda < 1$, then $\lambda \underline{p}$ the magnitude.
- If $\lambda = 0$, then $\lambda \underline{p} = \underline{0}$.
- If $\lambda < 0$, then $\lambda \underline{p}$ sees the magnitude scaled by $|\lambda|$ and direction

Laws/Results

- \underline{p} and $\lambda \underline{p}$, $\lambda > 0$ are
- $\underline{\mathbf{p}}$ and $\lambda \underline{\mathbf{p}}$, $\lambda < 0$ are

⑦ GeoGebra

Scaling vector investigation

1.4 Vector equations

Laws/Results

Vectors can be • Added

• Have scalar multiplication applied

in the same manner as usual scalar numbers, with the same commutative/associative/distributive laws.

Example 5

(MATH1131 Mathematics 1A and MATH1141 Higher Mathematics 1A Algebra Notes, 2018) Fully simplify: $3(2\underline{a} - \underline{b}) + (\underline{a} - 2\underline{b})$.

Example 6

(MATH1131 Mathematics 1A and MATH1141 Higher Mathematics 1A Algebra Notes, 2018) Fully simplify: $2\overrightarrow{AC} - \overrightarrow{OC} + \overrightarrow{OA}$.

Important note

- Draw picture if it's slightly uncertain what is \overrightarrow{AC} .
- Convert the vector arrow notation \overrightarrow{OC} to the single variable notation \underline{c} .

	7		xam	ple	7																					 	
	(MA')	TH113	31 M	Iath	ema	itic	s 1	A ai	nd I	MA	TH	<i>I11</i>	41	Hi	ghe	er l	Mati	hei	matic	s 1	Α.	Alg	ebra	Ne	tes,		
	2018) that	In \triangle	.OAI	B, 1	7 ar	nd I	Eε	are p	oin	ts s	ucl	n tl	hat	01	D :	D	A =	= C	DE:I	EB	=	1:	2. F	rov	e		
	(a)	DE	is pa	arall	lel t	o A	AB																				
	(b)	the l	engt	h o	f D	E is	$s \frac{1}{3}$	tim	ies 1	tha	t o	f A	В.														•••••
											······································									• • • • •							
			•								• • • • •	· · ·															
			• • • • • • • • • • • • • • • • • • •								* * * * * *																
•••••			• • • •																								
										• • • • •	• • • • • •											•••••	•••				
•••••																										 	
			· · · · · · · · · · · · · · · · · · ·								• • • • •																
						• · · · · · · · · · · · · · · · · · · ·					•																
••••• ••••			5 5 - 						•	•••••							· · · · · · · · · · · ·				•••••	•••••			· · · · · · · · · · · · · · · · · · ·		
• • • •		· · · · · · · · · · · · · · · · · · ·	•																			•••••					•••••
•••••		· · · · · · · · · · · · · · · · · · ·	• • • • •						· · · · · ·	• • • • • •							•••••					•••••	•••			 	
· · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			•					• • • •						· · · · · · · ·								•	 	
						• • • • • • • • • • • • • • • • • • •					• • • • •																
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·														· · · · · · · · · · · · · · · · · · ·		
•••••		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·							•••••	- 						· · · · · · · ·					•••••					
			· · · · · · · · · · · · · · · · · · ·								- - - - - - -															 	
																						•••••				 	
			*			· · · · · · · · · · · · · · · · · · ·					- - - - -														· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·	•								· · · · · · · · · · · · · · · · · · ·	· · · · · ·													· · · · · · · · · · · · · · · · · · ·	 	
											• • • • •														•		
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·																	• • • • •					· · · · · · · · · · · · · · · · · · ·	 · · · · · · · · · · · · · · · · · · ·	
	1	F ur	ther	exe	erci	ses		· · · · · · · · · · · · · · · · · · ·			· · · · · · · ·	· · · · · ·														 · · · · · · · · · · · · · · · · · · ·	•••••
	Ex 3.	A-3C	(H	aes	e et	al.	, 2	015)				E	Lx 8	8A	(Pe	nde	r e	et al.,	20	19)					 · · · · · · · · · · · · · · · · · · ·	
	(Mor	e intro	oduc	tory	y ty	pe	qu	estio	ns)				•	Q	1-1	9										 · · · · · · · · · · · · · · · · · · ·	
	•	Every	v seco	ond	sul	opa	rt						•	4		Q20)-21										
																							:				
INT	RODUCTION	TO VECTO) DRS								•								NOI	RMA	NHU	RST I	OYS'	HIGH	SCHOO		
		· · · · · · · · · · · · · · · · · · ·									•														• • •		

Section 2

Simple Vector Geometry

2.1 Vector components

- 2.1.1 Unit vector
 - Definition 8

The *unit vector* has ______1.

Laws/Results

For every vector **p** there are two *normalised* (corresponding unit) vectors:

• $\widehat{p} = \frac{p}{\left| p \right|}$. to p. • $-\widehat{p} = -\frac{p}{\left| p \right|}$.

to $\widetilde{\mathbf{p}}$.

GeoGebra Unit vector

2.1.2 Cartesian basis vectors/components

Definition 9

In the Cartesian plane, define the *basis vectors* to be unit vectors in the

• x direction to be <u>i</u>

• y direction to be <u>j</u>

Fill in the spaces

• The position (5,3) can now be represented via a *translation vector*.

 $\overrightarrow{OQ} =$

$$\binom{5}{3} = 5 \binom{1}{0} + 3 \binom{0}{1}$$

Definition 10

The point Q(x, y) has position vector

$$\overrightarrow{OQ} = \begin{pmatrix} x \\ y \end{pmatrix} = x\mathbf{j} + y\mathbf{j}$$

where

- The component form is $x \underbrace{i} + y j$
- Represented in *column vector* notation: $\begin{pmatrix} x \\ y \end{pmatrix}$.
- Year 7-10 ordered pair notation: (x, y).

Important note

Pender et al. (2019) and *Mathematics Extension 1 Stage 6 Syllabus* (2017, Revised 18/11/2019) both use brackets instead of parentheses for the column vector delimiters, e.g.

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

Tertiary education providers however, tend to use parentheses.

Example 8

A ship S leaves port O and sails north-east at 20 km/h. Describe its position after 6 hours by giving its position vector as a sum of multiples of the basis vectors \underline{i} and \underline{j} .

NORMANHURST BOYS' HIGH SCHOOL

notation:

16	Simple Vector Geometry -	- Vector components
2.1.3 Position vs displacement vectors		
Definition 11		
A position vector of a point P is the vector and finishes at P .	\overrightarrow{OP} , where the vector con	nmences at the
A position vector gives theplane.		. of a point in the
• Each point P in the Cartesian plane con	responds to the position ve	ector
A displacement vector is the vector \overrightarrow{AB} , we and finishes at B .	here the vector commences	at the point A
A displacement vector gives the another.		of a point from
• Vector of point A relative to point B :	• • • • • • • • • • • • • • • • • • •	
GeoGebra Position Vector Investigation - see h displacement vector.	ow a position vector is	different to a
🔨 Laws/Results		
For two points P and Q with position vect	ors $\underline{\mathbf{p}} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$ and $\underline{\mathbf{q}} = \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}$) respectively,
$\begin{array}{c c} y \\ \uparrow & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	$= \dots \qquad \overrightarrow{OQ} + \overrightarrow{QI}$	3 =
$\begin{array}{c c} P \\ P \\ \hline P \\ \hline Q \end{array} \qquad \overrightarrow{PQ} = \dots$	$\overrightarrow{QP} = \dots$	• • • • • • • • • • • • • • • • • • •
$ \begin{array}{c c} & \xrightarrow{1} & \\ & & \\ $	$ \begin{array}{c c} & & = & \\ p_1 \\ p_2 \end{array} \end{array} = \begin{pmatrix} p_1 \\ p_2 \end{array} $	$ \begin{array}{c} - & q_1 \\ - & q_2 \end{array} $

INTRODUCTION TO VECTORS

Example 9 (Haese et al., 2015) AB is a diameter of a circle with centre C(-1, 2). If B is (3, 1), find:

(a) *BC*(b) the coordinates of *A*.

[2020 NEAP Ext 1 Trial Q7] The position vectors of points A and B are \underline{a} and \underline{b} respectively. Point C is the midpoint of OB and point D is such that ABCD is a parallelogram.

		*			
-				1 . .	
	54 A A 4	10000	Parts M		
		XA			

(Pender et al., 2019)

- (a) Find the vector \underline{u} of length 10, with angle 150° to the positive direction of the horizontal axis.
- (b) Find the length and angle (exact length, angle to the nearest degree) of $\underline{y} = -\underline{i} 2\underline{j}$.

Answer: (a) $\underline{u} = -5\sqrt{3}\underline{i} + 5\underline{j}(b) |\underline{u}| = \sqrt{5}, \theta \approx 243^{\circ}.$

Section 3

Vector Geometry with the Dot Product

3.1 **Definitions**

Definition 13

The dot product between two vectors $\underline{\mathbf{p}} = x_1 \underline{\mathbf{i}} + y_1 \underline{\mathbf{j}}$ and $\underline{\mathbf{q}} = x_2 \underline{\mathbf{i}} + y_2 \underline{\mathbf{j}}$ (also known as scalar product):

 $\mathbf{p} \cdot \mathbf{q} = \dots$

GeoGebra Dot Product Insight

Example 21

- Use $\underline{p} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$ etc to prove the following: (a) $\underline{p} \cdot \underline{q} = \underline{q} \cdot \underline{p}$ (Commutativity) (b) $\underline{p} \cdot \underline{p} = \left|\underline{p}\right|^2$
- (c) $\underline{p} \cdot (\underline{q} + \underline{r}) = \underline{p} \cdot \underline{q} + \underline{p} \cdot \underline{r}$ (Associativity)
- (d) $(\underline{p} + \underline{q}) \cdot (\underline{r} + \underline{s}) = \underline{p} \cdot \underline{r} + \underline{p} \cdot \underline{s} + \underline{q} \cdot \underline{r} + \underline{q} \cdot \underline{s}$

26

(Haese et al., 2015, Ex 3I) Explain why $\underline{a} \cdot \underline{b} \cdot \underline{c}$ is meaningless.

3.2 Angle between two vectors

The dot product enables the θ between two non-zero vectors to be found.

Definition 14

The angle θ between two non-zero vectors \underline{p} and \underline{q} is related by:

$$\therefore \underbrace{p} \cdot \underbrace{q} = \ldots$$

📰 Steps

- Proof
- 1. Draw situation representing the angle θ between two vectors \underline{p} and \underline{q} , and vector $\underline{q} \underline{p}$.

2. Apply the cosine rule to the triangle:

$$\left| \mathbf{\hat{q}} - \mathbf{\hat{p}} \right|^2 = \dots$$

3. Let $\underline{p} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$ and $\underline{q} = \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}$ and replace magnitudes with components of \underline{p} and \underline{q} :

 $\therefore \underbrace{p} \cdot \underbrace{q} = \ldots$

4. Consequently,

NORMANHURST BOYS' HIGH SCHOOL

$$\cos \theta =$$

A Laws/Results

Geometric results of the dot product

• If p is *perpendicular* to q, then $\theta = 90^{\circ}$:

 $\underbrace{\mathbf{p}}_{\widetilde{\mathbf{Q}}} \cdot \underbrace{\mathbf{q}}_{\widetilde{\mathbf{Q}}} = \left| \underbrace{\mathbf{p}}_{\widetilde{\mathbf{Q}}} \right| \left| \underbrace{\mathbf{q}}_{\widetilde{\mathbf{Q}}} \right| \cos \theta$ $= \dots$

= or

=

- If \underline{p} is *parallel* to \underline{q} , then $\theta = 0^{\circ}$ or 180° :
 - $\underbrace{\mathbf{p}}_{\widetilde{\mathbf{u}}} \cdot \underbrace{\mathbf{q}}_{\widetilde{\mathbf{u}}} = \left| \underbrace{\mathbf{p}}_{\widetilde{\mathbf{u}}} \right| \left| \underbrace{\mathbf{q}}_{\widetilde{\mathbf{u}}} \right| \cos \theta$

C GeoGebra

Parallel Vectors investigation

Example 23

[2022 Ext HSC Q11] (2 marks) The vectors $\underline{u} = \begin{pmatrix} a \\ 2 \end{pmatrix}$ and $\underline{v} = \begin{pmatrix} a-7 \\ 4a-1 \end{pmatrix}$ are perpendicular.

What are the possible values of a?

Answer: 2 or $-\frac{7}{4}$

Example 24

(Haese et al., 2015) Consider the points A(2, 1) and B(6, -1) and C(5, -3). Use the dot product to determine whether $\triangle ABC$ is right angled or not. If so, locate the right angle. Answer: At B

NORMANHURST BOYS' HIGH SCHOOL

Example 32

[2020 Independent Ext 1 Trial Q11] In the diagram, OAB is an acute angled triangle in which OA = OB. The vector $\overrightarrow{OA} = \underline{a}$ and $\overrightarrow{OB} = \underline{b}$.

33

CTOR GEOMETRY WITH THE DOT PRODUCT - ANGLE BETWEEN TWO VECTORS																														
					•																									
	1		E	xa	mp	le	33										- - - -												•••••	
[20	20	JI	RA	H	S E	Ext	1	\mathbf{Tr}	ial	Q	12]]	[n	$_{\mathrm{the}}$	iso	osc	eles	s ti	riai	ngl	e⊿	B	C,	$ \overline{A} $	\vec{B}		$ \overline{A} $	\vec{C}	. I)
is t	he	m	idr	ooii	nt d	of s	side	e A	В	an	d F	E is	s tl	ne i	mid	lpo	int	of	si	de	AC	7.	\overline{CI}	j j is	 00-5	erp	 enc	 dici	ula	r
to \overrightarrow{BE} .																														
(i)		D	rav	v tl	he	dia	gra	am	an	d l	abe	el 2	$\angle B$	AC	C =	θ	an	d	\overline{AI}	5 =	= <i>r</i>	•							-	1
()		тт				•	. 1			₹		,		•				⇒	-				. 1		•					
(11)		He	enc	ce i or i	10t net	ing tho	th ds	at to	CIfin	Dr dt	nay he	z b va	e v lue	vrit e of	ten	as BA	$ \stackrel{s}{C} A$	D		4C	, 0	ro	the	erw	ıse	, us	se			3
		vc)I I	:	0110	ub	00	1111			va	iuc			:														
				· · · · · ·	• • • •											• • • • •														
																													•••••	
					· · · · · · ·																									
					•																									
																	•••••													
				•••••	· · · · · ·					• • • • •							•••••													

Evertises

Ex 3I-3J (Haese et al., 2015) (More introductory type questions) **Ex 8C** (Pender et al., 2019)

• Every second subpart

• All questions

NORMANHURST BOYS' HIGH SCHOOL

3.3 Other geometric proofs

Important note

Geometric proofs involving vectors are vastly different to the Euclidean Geometry proofs!

Steps

Use the following as a guide to these proofs:

- Introduce vectors, by choosing one of the vertices or a point outside the figure as a reference point/origin.
- Use the ______ and _____ of vectors to complete a triangle.
- vectors are of each other.
- The ______ is zero when two ______ vectors are at ______.
- The _____ may also allow access to the angle between some of the vectors.

Example 34

[Ex 8D Q2] **66** P, Q, R and S are midpoints of AB, BC, CD and DA respectively. Let $\overrightarrow{AB} = \underline{a}, \overrightarrow{BC} = \underline{b}$ and $\overrightarrow{AD} = \underline{d}$ and $\overrightarrow{DC} = \underline{c}$.

- (a) Explain why $\underline{a} + \underline{b} = \underline{d} + \underline{c}$.
- (b) Express \overrightarrow{PQ} in terms of \underline{a} and \underline{b} .
- (c) Express \overrightarrow{SR} in terms of \underline{d} and \underline{c} .
- (d) Hence show that $\overrightarrow{PQ} = \overrightarrow{SR}$.
- (e) Deduce that the quadrilateral PQRS is a parallelogram.

Example 36

36

[Ex 8D Q6] **66** In the diagram OABC is a parallelogram whose diagonals OB and AC are equal. The points A and C have respective position vectors \underline{a} and \underline{c} relative to O.

- (a) Explain why $\overrightarrow{CB} = \underline{a}$.
- (b) Write \overrightarrow{AC} in terms of \underline{c} and \underline{a} .
- (c) Explain why $|\underline{c} + \underline{a}| = |\underline{c} \underline{a}|$.
- (d) Use the result in the previous part, and the fact that $|\underline{y}|^2 = \underline{y} \cdot \underline{y}$, to show that $\underline{a} \cdot \underline{c} = 0$.
- (e) What conclusions can be made about a parallelogram whose diagonals are equal?

Example 37

[Ex 8D Q10] **66** Use vectors to prove that the sum of the squares of the lengths of the two diagonals of a parallelogram is equal to the sum of the squares of the lengths of the four sides.

INTRODUCTION TO VECTORS

38

NORMANHURST BOYS' HIGH SCHOOL

Example 39

In the following figure, the position vectors of the points A and B with respect to the origin are \underline{a} and \underline{b} respectively. They are unit vectors making angles α and β with the positive direction of the x axis.

Prove that:

- (a) $\underline{a} = \cos \alpha \underline{i} + \sin \alpha \underline{j}$ and $\underline{b} = \cos \beta \underline{i} + \sin \beta \underline{j}$
- (b) $\cos(\alpha \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta.$

NORMANHURST BOYS' HIGH SCHOOL

INTRODUCTION TO VECTORS

													* · · · · · · · · · · · · · · · · · · ·										•••••••			
 42									V	ECTC	DR C	JEON	AETRY	WITH	THE	E Dot	PROI	DUCT	– Oti	IER	GEOM	ETRIC	PR	OOFS	3	
				· · · · · ·			· · · · · · · · · · · · · · · · · · ·								••••••											
				· · · ·	* · · · · · · · · · · · · · · · · · · ·			*					• • • • • • • • • • • • • • • • • • •									• • •				* * * * * * * * * * * * * * * * * * *
	•														*											
				· • • • • • • •																						
																	- - - - - - - - - - - - - - - - - - -									
															•••••••		· · · · · · · · · · · · · · · · · · ·							•		
																	· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·		
		-) -))													· · · ·						•••••••••••••••••••••••••••••••••••••••			
																						•				
		·															· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				
 															•••••••			· · · · · · · · · · · · · · · · · · ·								
		· · · · · ·		· · · · · ·						•••••					•••••••		•••••					· · · · · · · · · · · · · · · · · · ·	•••	•		
		·																				· · · · · · · · · · · · · · · · · · ·				
		· · · · · · · · · · · · · · · · · · ·																								
																						· · · · · · · · · · · · · · · · · · ·				
		••••••										•					•••••									
 																						•		•		
		· · · · · · ·		· · · · ·													· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·				
			· · ·	· · · · ·											••••••		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·				
				No no no no no no no No no no no no no no no no no no no no no no no no n											••••••		· · · · · · · · · · · · · · · · · · ·							•		
 																	· · · · · · · · · · · · · · · · · · ·					•				
		1		ur	the	r e	xerc	ises								/										
	\mathbf{E} : (N	x 3 /or	L e ir	(H ntre	laes odu	e e cto	et al. ory ty	, 20 ype	15) qu	estio	ns)]	Ex 8	D	(Pe	nder	et al	., 20	19)						
		•	Ev	ery	/ sec	cor	nd qu	iesti	ion					•	All	que	stion	\mathbf{s}								
 Int	RODU	CTION	то V	ECT	ÖRS													ľ	IORMAI	HUR	ST BO	YS' HIG	HSC	нооі	-	
				· · · · ·											· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·				

3.4 Projection of a vector on to another vector Definition 15

The *projection* of a vector \underline{a} on another vector \underline{b} is a vector parallel to \underline{b} with the following notation:

proj_b <u>a</u>

In the diagram given, \overrightarrow{OP} is the projection of \underline{a} on to \underline{b} .

Assumption: \underline{b} is a

Important note

Plain English: the projection of vector \underline{a} on to vector \underline{b} is the

from ... on to ...

♣ Laws/Results

The projection of \underline{a} on to \underline{b} , $\underline{b} \neq \underline{0}$:

 $\operatorname{proj}_{\underline{b}} \underline{a} = \dots$

C GeoGebra

Projection of vector $\underline{\mathbf{a}}$ on to $\underline{\mathbf{b}}$

NORMANHURST BOYS' HIGH SCHOOL

INTRODUCTION TO VECTORS

44

INTRODUCTION TO VECTORS

NORMANHURST BOYS' HIGH SCHOOL

3.4.1 Derivation

Consider the diagram:

- Suppose θ is the acute angle between a and \underline{b} .
- Give the relationship between PQ, |a| and θ :

• As $\operatorname{proj}_{\underline{b}} \underline{a}$ is a vector in the same \cdots to \underline{b} , it is also the unit vector in \underline{b} 's direction, multiplied by a scalar multiple:*

$$\operatorname{proj}_{\underline{b}} \underline{a} = \dots \underline{b}$$

$$= \underbrace{\dots}_{\text{scalar multiple, 'magnitude'}} \widehat{b}$$

$$= \underbrace{\dots}_{\underline{b}}$$

$$(\ddagger)$$

• Recall also, that $\underline{a} \cdot \underline{b} = \dots$, rearranging:

$$\cos \theta =$$

Substitute in the result from (\ddagger) :

$$\operatorname{proj}_{\underline{b}} \underline{a} = \dots = \frac{\underline{a} \cdot \underline{b}}{|\underline{b}|^2} \underline{b}$$

Laws/Results

The projection of vector \underline{a} on to vector \underline{b} :

$$\operatorname{proj}_{\underline{b}} \underline{a} = \frac{\underline{\underline{a}} \cdot \underline{\underline{b}}}{|\underline{b}|^2} \underline{b} = \frac{\underline{\underline{a}} \cdot \underline{\underline{b}}}{\underline{\underline{b}} \cdot \underline{\underline{b}}} \underline{b}$$

^{*}See Section 2.1.1 on page 13

Example 45

[2022 Ext 1 HSC Q14] (3 marks) The vectors \underline{u} and \underline{v} are not parallel. The vector p is the projection of \underline{u} onto the vector \underline{v} .

The vector \underline{p} is parallel to \underline{v} so it can be written as $\lambda_0 \underline{v}$ for some real number λ_0 . (Do NOT prove this).

Prove that $|\underline{\mathbf{u}} - \lambda \underline{\mathbf{v}}|$ is smallest when $\lambda = \lambda_0$ by showing that, for all real numbers λ , $|\underline{\mathbf{u}} - \lambda_0 \underline{\mathbf{v}}| \leq |\underline{\mathbf{u}} - \lambda \underline{\mathbf{v}}|$.

Ex 3K (Haese et al., 2015) (More introductory type questions)

Ex 8E (Pender et al., 2019)

• Every second subpart

INTRODUCTION TO VECTORS

• All questions

Section A

Past examination questions

- Most questions in this section originate from various VCEs.
- Two additional terms which are not used in the NSW Syllabuses but have equivalents:

Definition 16

Vector resolute is synonymous with the the vector projection.

Definition 17

Scalar projection is the length of the vector projection, with a negative sign if the projection has an opposite direction with respect to \underline{b}

A.1 2006 VCE Specialist Mathematics

A.1.1 Paper 2 Section 1

15. In the parallelogram shown, $|\underline{a}| = 2 |\underline{b}|$.

1

Which one of the following statements is true?

- (A) $\underline{a} = 2\underline{b}$ (C) $\underline{b} \underline{d} = \underline{0}$ (E) $\underline{a} \underline{b} = \underline{c} \underline{d}$
- (B) $\underline{a} + \underline{b} = \underline{c} + \underline{d}$ (D) $\underline{a} + \underline{c} = \underline{0}$

A.1.2 Paper 2 Section 2

Question 8

Point A has position vector $\underline{a} = -\underline{i} - 4\underline{j}$, point B has position vector $\underline{b} = 2\underline{i} - 5\underline{j}$, point C has position vector $\underline{c} = 5\underline{i} - 4\underline{j}$, and point D has position vector $\underline{d} = 2\underline{i} + 5\underline{j}$ relative to the origin O.

(a) Show that \overrightarrow{AC} and \overrightarrow{BD} are perpendicular.

 $\mathbf{2}$

- (b) Use a vector method to find the cosine of $\angle ADC$, the angle between \overrightarrow{DA} and \overrightarrow{DC} .
- (c) Find the cosine of $\angle ABC$, and hence show that $\angle ADC$ and $\angle ABC$ are **3** supplementary.

Point P has position vector $\mathbf{p} = 2\mathbf{i}$.

(d) Use the cosine of $\angle APC$ and an appropriate trigonometric formula to prove **3** that $\angle APC = 2\angle ADC$.

A *Tip:* attempt this question after **Topic 9:** Radians & (xi) Further **Trigonometric Identities 1**. Requires $\cos 2x = 2\cos^2 x - 1$.

A.2 2008 VCE Specialist Mathematics

A.2.1 Paper 2 Section 1

- 17. If P, Q and R are three collinear points with position vectors $\underline{p}, \underline{q}$ and \underline{r} 1 respectively, where Q lies between P and R. If $\left|\overrightarrow{QR}\right| = \frac{1}{2} \left|\overrightarrow{PQ}\right|$, then \underline{r} is equal to
 - (A) $\frac{3}{2} \underbrace{\mathbf{q}}_{\sim} \frac{1}{2} \underbrace{\mathbf{p}}_{\sim}$ (C) $\frac{3}{2} \underbrace{\mathbf{q}}_{\sim} \frac{3}{2} \underbrace{\mathbf{p}}_{\sim}$ (E) $\frac{3}{2} \underbrace{\mathbf{p}}_{\sim} \frac{3}{2} \underbrace{\mathbf{q}}_{\sim}$
 - (B) $\frac{3}{2} \underbrace{\mathbf{p}}_{\sim} \frac{1}{2} \underbrace{\mathbf{q}}_{\sim}$ (D) $\frac{1}{2} \underbrace{\mathbf{p}}_{\sim} \frac{3}{2} \underbrace{\mathbf{q}}_{\sim}$

A.3 2009 VCE Specialist Mathematics

A.3.1 Paper 2 Section 1

17. Vectors a, b and c are shown below.

A.4 2011 VCE Specialist Mathematics

A.4.1 Paper 2 Section 1

10. The diagram below shows a rhombus, spanned by the two vectors a and b.

A.5 2018 VCE Specialist Mathematics

A.5.1 Paper 2 Section 1

- **11.** Consider the vectors given by $\underline{a} = m\underline{i} + \underline{j}$ and $\underline{b} = \underline{i} + m\underline{j}$, where $m \in \mathbb{R}$. If the **1** acute angle between \underline{a} and \underline{b} is 30°, then m equals
 - (A) $\sqrt{2} \pm 1$ (C) $\sqrt{3}, \frac{1}{\sqrt{3}}$ (E) $\frac{\sqrt{39}}{13}$ (B) $2 \pm \sqrt{3}$ (D) $\frac{\sqrt{3}}{4 - \sqrt{3}}$

1

- 12. If $|\underline{a} + \underline{b}| = |\underline{a}| + |\underline{b}|$ and $\underline{a}, \underline{b} \neq 0$, which one of the following is **necessarily** 1 true?
 - (A) <u>a</u> is parallel to <u>b</u> (B) $|\underline{a}| = |\underline{b}|$ (C) <u>a</u> = <u>b</u> (D) <u>a</u> = -<u>b</u> (E) <u>a</u> is perpendicular to <u>b</u>

A.6 2020 Ext 1 HSC

4. Maria starts at the origin and walks along all of the vector $2\underline{i} + 3\underline{j}$, then walks along all of the vector $3\underline{i} - 2\underline{j}$ and finally along all of the vector $4\underline{i} - 3\underline{j}$.

How far from the origin is she?

- (A) $\sqrt{77}$ (C) $2\sqrt{13} + \sqrt{5}$ (B) $\sqrt{85}$ (D) $\sqrt{5} + \sqrt{7} + \sqrt{13}$
- **6.** The vectors \underline{a} and \underline{b} are shown.

Which diagram below shows the vector $\underline{v} = \underline{a} - \underline{b}$?

9. The projection of the vector $\begin{pmatrix} 6\\7 \end{pmatrix}$ on to the line y = 2x is $\begin{pmatrix} 4\\8 \end{pmatrix}$. The point (6,7) is reflected in the line y = 2x to a point A.

What is the position vector of the point A?

(A) $\begin{pmatrix} 6\\12 \end{pmatrix}$ (B) $\begin{pmatrix} 2\\9 \end{pmatrix}$ (C) $\begin{pmatrix} -6\\7 \end{pmatrix}$ (D) $\begin{pmatrix} -2\\1 \end{pmatrix}$

Question 11

(b) For what value(s) of a are the vectors
$$\begin{pmatrix} a \\ -1 \end{pmatrix}$$
 and $\begin{pmatrix} 2a-3 \\ 2 \end{pmatrix}$ perpendicular? **3**

A.7 2020 Ext 2 HSC

This question does not contain any Extension 2 specific content, and so is placed in this summary instead.

Question 15

(b) The point C divides the interval AB so that $\frac{CB}{AC} = \frac{m}{n}$. The position vectors of A and B are a and b respectively, as shown in the diagram.

i. Show that
$$\overrightarrow{AC} = \frac{n}{m+n} (\underline{b} - \underline{a}).$$

ii. Prove that
$$\overrightarrow{OC} = \frac{m}{m+n}\mathbf{a} + \frac{n}{m+n}\mathbf{b}$$

Let OPQR be a parallelogram with $\overrightarrow{OP} = \underbrace{p}_{i}$ and $\overrightarrow{OR} = \underbrace{r}_{i}$. The point S is the midpoint of QR and T is the intersection of PR And OS, as shown in the diagram.

iii. Show that
$$\overrightarrow{OT} = \frac{2}{3}\overrightarrow{r} + \frac{1}{3}\overrightarrow{p}$$
.

iv. Using parts (ii) and (iii), or otherwise, prove that T is the point that **1** divides the interval PR in the ratio 2:1.

 $\mathbf{2}$

1

A.8 2021 Ext 1 HSC

Question 14

(a) A plane needs to travel to a destination that is on a bearing of 063°. The engine is set to fly at a constant 175 km/h. However, there is a wind from the south with a constant speed of 42 km/h.

On what constant bearing, to the nearest degree, should the direction of the plane be set in order to reach the destination? Answer: 075°

(c) i. For vector
$$\underline{\mathbf{y}}$$
, show that $\underline{\mathbf{y}} \cdot \underline{\mathbf{y}} = |\underline{\mathbf{y}}|^2$.

ii. In the trapezium ABCD, BC is parallel to AD and $\left|\overrightarrow{AC}\right| = \left|\overrightarrow{BD}\right|$.

Let
$$\underline{a} = \overrightarrow{AB}$$
, $\underline{b} = \overrightarrow{BC}$ and $\overrightarrow{AD} = k\overrightarrow{BC}$, where $k > 0$

Using part (i) or otherwise, show $2\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} + (1-k) \left|\underline{\mathbf{b}}\right|^2 = 0.$

A.9 2022 Ext 1 HSC

(B) $0 \le \theta < \frac{2\pi}{3}$

(C) $\frac{\pi}{3} < \theta \le \pi$

8. The angle between two unit vectors \underline{a} and \underline{b} is θ and $|\underline{a} + \underline{b}| < 1$.

Which of the following best describes the possible range of values of θ ?

- (A) $0 \le \theta < \frac{\pi}{3}$ (D) $\frac{2\pi}{3} < \theta \le \pi$
 - **Note:** attempt this after Topic 9 (Radians) has been completed.

1

3

Question 13

(a) Three different points A, B and C are chosen on a circle centred at O.

Let $\underline{\mathbf{a}} = \overrightarrow{OA}$, $\underline{\mathbf{b}} = \overrightarrow{OB}$ and $\underline{\mathbf{c}} = \overrightarrow{OC}$. Let $\underline{\mathbf{h}} = \underline{\mathbf{a}} + \underline{\mathbf{b}} + \underline{\mathbf{c}}$ and let H be the point such that $\overrightarrow{OH} = \underline{\mathbf{h}}$, as shown in the diagram.

Show that \overrightarrow{BH} and \overrightarrow{CA} are perpendicular.

A.10 2023 Ext 1 HSC

- 6. Given two non-zero vectors \underline{a} and \underline{b} , let \underline{c} be the projection of \underline{a} onto \underline{b} . What is the projection of $10\underline{a}$ onto $2\underline{b}$?
 - (A) $2\underline{c}$ (B) $5\underline{c}$ (C) $10\underline{c}$ (D) $20\underline{c}$

3

 $\mathbf{1}$

3

4

Question 14

(c) i. Given a non-zero vector $\begin{pmatrix} p \\ q \end{pmatrix}$, it is known that the vector $\begin{pmatrix} q \\ -p \end{pmatrix}$ is perpendicular to $\begin{pmatrix} p \\ q \end{pmatrix}$ and has the same magnitude. (Do NOT prove this).

Points A and B have position vectors $\overrightarrow{OA} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ and $\overrightarrow{OB} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$, respectively.

Using the given information, or otherwise, show that the area of $\triangle OAB$ is $\frac{1}{2} |a_1b_2 - a_2b_1|$.

ii. The point P lies on the circle centred at I(r, 0) with radius r > 0, such that \overrightarrow{IP} makes an angle of t to the horizontal.

The point Q lies on the circle centred at J(-R, 0) with radius 2t to the horizontal.

Using part (i), or otherwise, find the values of t, where $-\pi \leq t \leq \pi$, that maximise the area of $\triangle OPQ$.

2024 NBHS Assessment Task 1 A.11

Question 4

(a) The diagram shows $\triangle ABC$, and the line 2x + y = 8 with x and y intercepts at A and B respectively. The point C has coordinates (7, 4) and N is a point on AB such that $CN \perp AB$.

By using vector methods, show that ii.

$$\cos \angle ABC = \frac{3}{\sqrt{13}}$$

Find a vector $\underline{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ such that \underline{u} is perpendicular to \overrightarrow{BA} . iii. 1 $\mathbf{2}$

iv. Hence show that

$$\overrightarrow{NC} = \begin{pmatrix} 4\\2 \end{pmatrix}$$

Use vector methods to find the coordinates of N. v.

 $\mathbf{1}$

2

2

Question continues overleaf...

A line ℓ with equation ax + by + c = 0 is drawn in the Cartesian plane, and $P(x_0, y_0)$ is located off the line ℓ , and point Q has coordinates $Q(x_1, y_1)$ which lies on the line ℓ . N is a point that is located on the line ℓ such that $PN \perp AB$.

You are given that $\underline{\mathbf{y}} = \begin{pmatrix} a \\ b \end{pmatrix}$ is a vector that is perpendicular to \overrightarrow{BA} (Do NOT prove this).

vi. By finding \overrightarrow{QP} using the coordinates given, show that

$$\overrightarrow{\text{NP}} = \frac{ax_0 + by_0 + c}{\sqrt{a^2 + b^2}}\widehat{\mathfrak{Y}}$$

vii. Briefly explain why the shortest distance from a point (x_0, y_0) to a line ax + by + c = 0 is given by

$$\frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

Answers

iii. Any scalar multiple of $\begin{pmatrix} 2\\1 \end{pmatrix}$

v. (3, 2)

vii.Show. Insufficient to state the perpendicular distance formula.

iv. Show

vi. Hint: use $ax_1 + by_1 + c = 0$

NESA Reference Sheet – calculus based courses

Trigonometric Functions

 $\sin A = \frac{\text{opp}}{\text{hyp}}, \quad \cos A = \frac{\text{adj}}{\text{hyp}}, \quad \tan A = \frac{\text{opp}}{\text{adj}}$ $A = \frac{1}{2}ab\sin C$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\frac{\sqrt{2}}{45^{\circ}}$ $C^{2} = a^{2} + b^{2} - 2ab\cos C$ $\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$ $l = r\theta$ $A = \frac{1}{2}r^{2}\theta$ $\frac{60^{\circ}}{1}$

Trigonometric identities

$$\sec A = \frac{1}{\cos A}, \ \cos A \neq 0$$
$$\csc A = \frac{1}{\sin A}, \ \sin A \neq 0$$
$$\cot A = \frac{\cos A}{\sin A}, \ \sin A \neq 0$$
$$\cos^2 x + \sin^2 x = 1$$

Compound angles

 $\sin(A + B) = \sin A \cos B + \cos A \sin B$ $\cos(A + B) = \cos A \cos B - \sin A \sin B$ $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ If $t = \tan \frac{A}{2}$ then $\sin A = \frac{2t}{1 + t^2}$ $\cos A = \frac{1 - t^2}{1 + t^2}$ $\tan A = \frac{2t}{1 - t^2}$ $\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$ $\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$ $\sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)]$ $\cos A \sin B = \frac{1}{2} [\sin(A + B) - \sin(A - B)]$ $\sin^2 nx = \frac{1}{2} (1 - \cos 2nx)$ $\cos^2 nx = \frac{1}{2} (1 + \cos 2nx)$

Statistical Analysis

- approximately 68% of scores have z-scores between -1 and 1
- approximately 95% of scores have z-scores between –2 and 2
- approximately 99.7% of scores have z-scores between -3 and 3

$$E(X) = \mu$$

 $\sqrt{3}$

$$Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$$

Probability

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

Continuous random variables

$$P(X \le x) = \int_{a}^{x} f(x) dx$$
$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

Binomial distribution

$$P(X = r) = {^nC_r}p^r(1-p)^{n-r}$$

$$X \sim Bin(n, p)$$

$$\Rightarrow P(X = x)$$

$$= {n \choose x}p^x(1-p)^{n-x}, x = 0, 1, \dots, n$$

$$E(X) = np$$

$$Var(X) = np(1-p)$$

- 2 -

Differential Calculus		Integral Calculus
Function	Derivative	$\int f'(x) [f(x)]^n dx = \frac{1}{1} [f(x)]^{n+1} + c$
$y = f(x)^n$	$\frac{dy}{dx} = nf'(x)[f(x)]^{n-1}$	$\int \int (x)[f(x)] dx = \frac{1}{n+1} [f(x)] + c$ where $n \neq -1$
y = uv	$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$	$\int f'(x)\sin f(x)dx = -\cos f(x) + c$
y = g(u) where $u = f(x)$	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	$\int f'(x)\cos f(x)dx = \sin f(x) + c$
$y = \frac{u}{v}$	$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	$\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$
$y = \sin f(x)$	$\frac{dy}{dx} = f'(x)\cos f(x)$	$\int f'(x)e^{f(x)}dx = e^{f(x)} + c$
$y = \cos f(x)$	$\frac{dy}{dx} = -f'(x)\sin f(x)$	$\int f'(x) = \int f'(x) dx$
$y = \tan f(x)$	$\frac{dy}{dx} = f'(x)\sec^2 f(x)$	$\int \frac{f(x)}{f(x)} dx = \ln f(x) + c$
$y = e^{f(x)}$	$\frac{dy}{dx} = f'(x)e^{f(x)}$	$\int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$
$y = \ln f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{f(x)}$	$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$
$y = a^{f(x)}$	$\frac{dy}{dx} = (\ln a)f'(x)a^{f(x)}$	$\int \frac{f'(x)}{dx - \frac{1}{2} \tan^{-1} f(x)} dx = \frac{1}{2} \tan^{-1} \frac{f(x)}{dx} + c$
$y = \log_a f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$	$\int a^{2} + [f(x)]^{2} a^{2x} - a^{4x} a^{4x} a^{4x} + c^{4x}$
$y = \sin^{-1} f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - \left[f(x)\right]^2}}$	$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$
$y = \cos^{-1} f(x)$	$\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - [f(x)]^2}}$	$\int_{a}^{b} f(x) dx$
$y = \tan^{-1} f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2}$	$\approx \frac{b-a}{2n} \left\{ f(a) + f(b) + 2 \left\lfloor f(x_1) + \dots + f(x_{n-1}) \right\rfloor \right\}$ where $a = x_0$ and $b = x_n$
	- 3	3 —

Combinatorics

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^{n} = x^{n} + \binom{n}{1}x^{n-1}a + \dots + \binom{n}{r}x^{n-r}a^{r} + \dots + a^{n}$$

Vectors

$$\begin{split} \left| \begin{array}{c} \underline{u} \right| &= \left| \begin{array}{c} x\underline{i} + y\underline{j} \right| = \sqrt{x^2 + y^2} \\ \\ \underline{u} \cdot \underline{v} &= \left| \begin{array}{c} \underline{u} \right| \right| \underline{v} \left| \cos \theta = x_1 x_2 + y_1 y_2 \right|, \\ \\ \\ \text{where } \begin{array}{c} \underline{u} &= x_1 \underline{i} + y_1 \underline{j} \\ \\ \\ \\ \text{and } \begin{array}{c} \underline{v} &= x_2 \underline{i} + y_2 \underline{j} \end{array} \end{split}$$

 $r_{\tilde{u}} = a + \lambda b_{\tilde{u}}$

Complex Numbers

 $z = a + ib = r(\cos\theta + i\sin\theta)$ $= re^{i\theta}$ $\left[r(\cos\theta + i\sin\theta)\right]^n = r^n(\cos n\theta + i\sin n\theta)$ $= r^n e^{in\theta}$

Mechanics

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$
$$x = a\cos(nt + \alpha) + c$$
$$x = a\sin(nt + \alpha) + c$$
$$\ddot{x} = -n^2(x - c)$$

© 2018 NSW Education Standards Authority

References

- Haese, M., Haese, S., & Humphries, M. (2015). Mathematics for Australia 11 Specialist Mathematics (2nd ed.). Haese Mathematics.
- MATH1131 Mathematics 1A and MATH1141 Higher Mathematics 1A Algebra Notes. (2018). UNSW School of Mathematics & Statistics.
- Mathematics Extension 1 Stage 6 Syllabus (Syllabus). (2017, Revised 18/11/2019, January). GPO Box 5300, Sydney, NSW 2001: NSW Education Standards Authority.
- Pender, W., Sadler, D., Ward, D., Dorofaeff, B., & Shea, J. (2019). CambridgeMATHS Stage 6 Mathematics Extension 1 Year 12 (1st ed.). Cambridge Education.
- So, Y. F., & Wong, M. S. (1987). New Way Additional Mathematics. Manhattan Press (HK).